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J. Jänecke1,a and T.W. O’Donnell2

1 Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120, USA
2 Michigan Center for Theoretical Physics and Science, Technology and Society Program, Residential College, University of
Michigan, Ann Arbor, MI 48109-1245, USA

Received: 24 November 2004 / Revised version: 16 February 2005 /
Published online: 20 April 2005 – c© Società Italiana di Fisica / Springer-Verlag 2005

Abstract. A global study of the symmetry energies reflects upon the curvature of the mass surface. Special
attention is given to the region from 56Ni to 100Sn. Isospin inversion is indicated for odd-odd self-conjugate
nuclei. Coexistence of isoscalar and isovector n-p interactions in the localized region N ≈ Z, A = 76–96 is
suggested by the isospin dependence of the symmetry energy. Experimental symmetry energies and values
extracted from nine mass equations are compared. Overall agreement exists, but some distinct differences
are also observed.

PACS. 21.10.Dr Binding energies and masses – 21.60.-n Nuclear structure models and methods

1 Introduction

Symmetry energies Esym(A, T ) depend strongly on isospin
T and also on nucleon number A. They influence the cur-
vatures of the experimental nuclear mass surface as well
as the mass surfaces obtained from mass equations. The
goodness of mass equations can therefore be tested by
comparing the calculated and experimental values.

2 Symmetry energies

Excitation energy differences between isobaric analog
states with isospins T ′ and T in nuclei with nucleon num-
ber A are denoted by ∆T ′,T (A). While many such energies
have been measured directly, a set including all known nu-
clei was used in the present work. It was deduced from
Coulomb-energy-corrected differences of all available ex-
perimental masses for neighboring isobars.

The energies ∆T ′,T (A) can furthermore be expressed
as differences between symmetry and pairing ener-
gies [1,2]. An expression for the symmetry energies has
been introduced as

Esym(A, T ) =
a(A, T )

A
T (T + 1). (1)

The factor a(A, T ) is an operationally defined symmetry
energy coefficient. Symmetry energies Esym(A, T ) and the
coefficients a(A, T ) were deduced globally over the entire
bregion of experimentally known nuclei from

a(A, T ) =
A ∆T+2,T (A)

4T + 6
for A = even and odd (2)
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which is valid for both odd-A and even-A nuclei. The en-
ergies ∆T+2,T (A) were obtained with the use of the new
updated atomic mass evaluation Ame2003 [3].

3 Results

Results were discussed earlier [1,2]. The symmetry energy
coefficients a(A, T ) are nearly constant over wide ranges of
nuclei where the shell model dominates in the description
of the symmetry energies. Systematic deviations from a
constant value are observed, though, particularly for shell
regions where neutrons and protons occupy different shell-
model orbits. Furthermore, an interesting effect was ob-
served locally for nuclei with N ≈ Z in the region A = 76
to 96 [4].

The quantity a(A, T ) displays an essentially smooth
dependence on A for most of the fpg shell containing
the p1/2p3/2f5/2g9/2 shell-model orbitals. The nuclei with
N = Z display a particularly interesting behavior. Here,
the even-even self-conjugate nuclei from A = 58 to 98 fol-
low a smooth dependence on mass number A. These nuclei
have T = 0 ground states. For the odd-odd nuclei with
N = Z with ground states of T = 0 or T = 1, however,
anomalies are observed for A = 62, 66, 70, and 74 suggest-
ing isospin inversion in agreement with experiment. The
departures from the smooth T = 0 curve make it possible
to estimate the excitation energies for the lowest T = 0
states [4].

The symmetry energies of most nuclei in the fpg shell
with Z > 28 and N < 50 follow a T (T + 1) dependence
on isospin as expected for the shell model. Distinct lo-
cal deviations in the heavier region near N = Z from
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Fig. 1. Symmetry-energy coefficients a(A, T ) as a function
of neutron and proton numbers N and Z deduced from ex-
perimental mass data and from mass equations or algorithms:
(a) ref. [5], (b) ref. [6], (c) ref. [7], (d) ref. [8], (e) ref. [9], (f)
ref. [10], (g) ref. [11], (h) ref. [12], (i) ref. [13].

A = 76 to 96 and centered at A ≈ 86 are observed.
Here, the symmetry energies display a T (T + 4) depen-
dence on isospin. Such a behavior is compatible with the
Wigner supermultiplet model [14], and contributions from
the isovector and isoscalar n-p interactions are thus in-
dicated. However, spin-isospin symmetry is known to be
broken in heavier nuclei contrary to an interpretation in
terms of SU(4) spin-isospin symmetry. Lunney, Pearson,
and Thibault [15] pointed out that the isoscalar n-p in-
teraction appears to provide a more direct description of
this localized effect. The intense interest in the T = 0
n-p interaction is reflected in the numerous theoretical
approaches reported in the literature (see, e.g., references
cited in ref. [4]). The origin of the above effect is not en-
tirely understood.

4 Mass equations

Replacing the experimental mass data by available theo-
retical mass predictions as basis for the above procedures
to extract symmetry energies makes it possible to directly

compare theoretical and experimental quantities, partic-
ularly the symmetry energy coefficients a(A, T ). Such a
comparison reflects upon the goodness or possible short-
comings of the respective mass equation. A study of so far
nine mass equations or procedures for reproducing experi-
mental masses and extrapolating into regions of unknown
nuclei is in progress [16].

While approximate agreement exists, as seen in fig. 1,
distinct discrepancies between theoretical and experi-
mental quantities are observed particularly in regions of
neutron-rich and proton-rich nuclei. The unusual behavior
of the mass surface characterized by the T (T + 4) depen-
dence of the symmetry energy in the upper fpg shell near
N ≈ Z is apparently not reproduced except, it seems, for
mass equation (g). Interestingly, some mass equations ap-
pear to predict a similar behavior for nuclei approaching
N = Z for the next higher shell from A = 100 to A = 164.
Mass equation (h) gives poor extrapolations for heavier
very poton-rich and neutron-rich nuclei. Mass equation (i)
displays no shell effects for both, the symmetry energy co-
efficients a(A, T ) and the pairing energies P (A, T ). Many
additional details become apparent from the comparison
of the curvature of the experimental and theoretical mass
surfaces, both, in the region of nuclei which overlaps with
the experimentally known masses and for the extrapolated
regions. These effects become more apparent by display-
ing (not shown) the differences between the theoretical
and experimental values.
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11. J. Jänecke, P.J. Masson, At. Data Nucl. Data Tables 39,

265 (1988).
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